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1    Introduction 

We report here on the work performed during the three years (April 1st, 2012 - March 31st, 
2015) of the contract N00014-12-1-0383 on Multiscale materials science: a mathematical ap- 
proach to the role of defects and uncertainty. 

The presence of numerous length-scales in material science problems represents a daunt- 
ing challenge for numerical simulation. Quantifying the effects of defects, and more generally 
any uncertainty arising from data, discretization, and the mechanical model for an associated 
numerical method has become an increasingly important aspect of multiscale analysis. Uncer- 
tainty in materials science problems assumes various forms, and includes defects in crystals, 
impurities or heterogeneities in continuous media, ... Our aim is to develop new mathemati- 
cal and numerical tools, including probabilistic approaches, to address the current challenging 
problems of interest in materials science. 

In this report, we first focus on developping affordable, numerical methods in the context 
of stochastic homogenization. 

Many partial differential equations of materials science indeed involve highly oscillatory 
coefficients and small length-scales. Homogenization theory is concerned with the derivation 
of averaged equations from the original oscillatory equations, and their treatment by adequate 
numerical approaches. Stationary ergodic random problems (and the associated stochastic 
homogenization theory) are one instance for modelling uncertainty in continuous media. The 
theoretical aspects of these problems are now well-understood, at least for a large variety of 
situations. On the other hand, the numerical aspects have received less attention from the 
mathematics community. Standard methods available in the literature often lead to very, and 
sometimes prohibitively, costly computations, while affordable approaches do not rest upon 
a sound mathematical theoretical setting. 

Our aim is to compute the effective or homogenized coefficients that represent the be- 
havior of the material at a macroscopic scale. In a first part (see Section 2), we give a very 
brief overview of classical results of stochastic homogenization theory. Then we explain why 
such results lead to practical difficulties. In particular, though the effective properties of 
the material considered here are deterministic, their approximations require solving partial 
differential equations with random coefficients posed on large domains. This induces very 
expensive computations. 

In Section 3, we consider one possible technique to decrease the cost of such computations, 
namely the control variate technique. This variance reduction technique, which is based 
on using a surrogate model, is classical, and has already been successfully applied in other 
scientific fields. We show here that it can also be used in the general framework of stochastic 
homogenization. In our case, the surrogate model that we use is inspired by a defect-type 
theory, where a perfect periodic material is perturbed by rare defects. This model has been 
introduced in [9] in the context of weakly random models. Here, we address the fully random 
case, and show that the perturbative approach proposed in [9, 11] can be turned into an 
efficient control variable1. When the perturbation is not small, the perturbative approach, 
although not accurate, is good enough to reduce the variance of a complete computation. For 
a large class of initial highly oscillatory coefficients, the resulting approach yields a significantly 
more precise estimation of the properties of the effective material, at equal computational cost, 
than Monte Carlo approaches or other variance reduction approaches that we have previously 



adapted to the homogenization setting. 

In Section 4, we address questions related to non-periodic modelling of multiscale ma- 
terials. Random modelling is indeed a standard modelling response to situations when the 
idealized, say periodic, modelling is inappropriate. It is however commonly admitted, and 
observed in practice, that random modelling leads to possibly prohibitively computation- 
ally expensive problems. There is a definite theoretical and practical interest in generalizing 
modelling of perfect materials in directions different from the random paradigm. 

Within the current contract, we have investigated this idea, which has not been explored 
in the previous ONR grant. The general approach, that we describe in Section 4, consists in 
approximating at the fine scale the solution to an elliptic equation with oscillatory coefficient 
when this coefficient consists of a "nice" function (say periodic) which is perturbed by a local 
defect. To date, the questions that have been investigated are essentially of a theoretical 
nature. They yet give rise to an associated numerical endeavour, that is now on the horizon. 

In Section 5, we also investigate a research direction that has not been explored in the 
previous ONR grant. All models that involve a random parameter require (at least a partial, 
and most often a complete) knowledge of the distribution of this random parameter. Now, 
access to this distribution is practically difficult. One is then-fore bound to assume a given 
form (Gaussian, ...) for the distribution and proceed with the computation. A question of 
major practical interest is to a posteriori prove, or disprove the validity of this assumption. 
Put differently, tests of hypotheses in the context of engineering problems is an important 
issue. A preliminary step, before trying to identify the distribution of the random parameters, 
is to assume a specific form of this distribution, depending on a few quantities (e.g. assume a 
Gaussian distribution with an unknown variance) and identify these quantities. The parameter 
identification problem that we consider in Section 5 exactly fits in this preliminary step. 

The works described below have been performed (jointly or separately) by Claude Le Bris 
(PI), Frederic Legoll (Co-PI) and William Minvielle (Ph.D. student). 

2     Basics of stochastic homogenization 

[A detailed presentation can be read in [8, 14].] 

For the sake of completeness, and to fix notations, we give here a very brief overview 
of classical results of stochastic homogenization theory. The reader familiar with stochastic 
homogenization can proceed directly to our contributions, detailed in Sections 3, 4 and 5. 

Stochastic homogenization is best understood in the light of the easiest context of ho- 
mogenization: periodic homogenization. This is the reason why we begin by laying some 
groundwork in the periodic context, before turning to stochastic homogenization per se in 
Section 2.2. We refer to, e.g., the monographs [17, 19, 22] for more details on homogenization 
theory, and to the review article [8], where we addressed some computational challenges in 
numerical stochastic homogenization. A super elementary introduction is contained in [15]. 



2.1     Periodic homogenization 

For consistency, we recall here some basic ingredients of periodic homogenization theory. We 
consider, in a regular bounded domain V of Mrf, the problem 

-div ApeT (|) WJ = /    in    V. 

u£ = 0    on    dV 
(1) 

where the matrix ApeT is symmetric definite positive and Zd-periodic. We manipulate for 
simplicity symmetric matrices, but the discussion carries over to non symmetric matrices up 
to slight modifications. 

The microscopic problem associated to (1), called the corrector problem in the terminology 
of homogenization theory, reads, for p fixed in Rd, 

-dw[Aper{y){p + S7wp{y))]=0    in    Rd, 

Wp is Z^-periodic. 

It has a unique solution up to the addition of a constant. Then, the homogenized matrix A* 
is such that, for any p 6 Rd, 

A*p=      Aper{y) {p + Vwp{y)) dy, 
Jo. 

where Q = (0,1)^ is the unit cube.   The main result of periodic homogenization theory is 
that, as e goes to zero, the solution u£ to (1) converges to u* solution to 

-div \A*Vu*] = f    in   2>, 
(3) 

u* = 0    on    dV. 

Several other convergences on various products involving Aper (— j and ue also hold. All this 

is well documented. 

The practical interest of the approach is evident. No small scale e is present in the 
homogenized problem (3). At the price of only computing d periodic problems (2) (as many 
problems as dimensions in the ambient space), the solution to problem (1) can be efficiently 
approached for s small. A direct attack of problem (1) would require taking a meshsize 
smaller than e. The difficulty has been circumvented. Of course, many improvements and 
alternatives exist in the literature. 

2.2    Stochastic homogenization 

Stochastic homogenization has a mathematical setting that is more involved than that of the 
periodic case. 

We consider the theoretical setting of stationary ergodic homogenization, with a discrete 
shift operator, which intuitively means the following. Pick two points x and y ^ x dX the 
microscale in the material and assume y = x+k with k eZd. The particular local environment 



seen from x (that is, the microstructure present at x) is generically diffc^rcuit from what is seen 
from y (that is, the microstructure present at y). However, the average local environment 
in x is assumed to be identical to that in y (considering the various realizations of the random 
material). In mathematical terms, the probability law of the microstructures is the same. 
This is stationarity. On the other hand, ergodicity means that considering all the points in 
the material is equivalent to fixing a point x in this material and considering all the possible 
microstructures present there. 

Consider now the problem 

-dw(A(-,uj)VuE) =f    in   V. 
■ e    J        I     ' (4) 

ue = 0    on    dV, 

where the matrix A, encoding the properties of the material, is assumed to be stationary (or, 
equivalently, statistically homogeneous). The solution ue to (4) converges, when e —)► 0, to 
the solution u* to (3) where the homogenized matrix is now given, for any p e ]Rd, by 

A*p = E(f A{y,-){P+ Vwp{y, ■)) dy\ , (5) 

and the corrector problem now reads 

-div[A(y,a;)(p + Vuv(z/,^))]=0    in    Rrf, 

Vwp is stationary,    E (   /  Vwp{y, •) dy j = 0. 
(6) 

A striking difference between the stochastic setting and the periodic setting can be observed 
comparing (2) and (6). In the periodic setting, the corrector problem is posed on a bounded 
domain, namely the periodic cell Q. In sharp contrast, the corrector problem (6) of the 
random setting is posed on the whole space Rd, and cannot be reduced to a problem posed 
on a bounded domain. 

The fact that the random corrector problem is posed on the entire space has far reaching 
consequences for numerical practice. In particular, this is the reason why standard methods 
available in the literature often lead to very costly computations, a fact which in turn motivates 
our work. 

3    Variance reduction techniques for stochastic homog- 
enization 

[Work expanded in [6].] 

3.1     The direct numerical approach 

Practical approximations of the homogenized matrix in random homogenization are not easily 
obtained, owing to the fact that the corrector problem (6) is set on the entire space.   In 



practice, truncations have to be considered, and the exact homogenized coefficients arc1 only 
obtained in the asymptotic regime. 

In practice, the matrix A* is indeed approximated by A*N{UJ) defined by 

ypeRd,    A*N{oj)p=-±-l   Aiy^ip + Vw^iy^^dy, (7) 
\QN\ JQN 

which is obtained by solving the corrector problem on a truncated domain, say the cube 
QN = {-N,N)d(zRd: 

-div [A{;u) (p + WW£{-,CJ))] = 0    on 

Wp{-,(jj) is Qv-periodic. (8) 

Although A* itself is a deterministic object, its practical approximation A*N is random, for 
all iV finite. It is only in the limit of infinitely large domains QN that the deterministic value 
is attained. It has indeed been shown in [18, Theorem 1] that limyv^oo ^^(w) = A*. 

We now remark that the error can be decomposed as 

A*N{u) -A* = {A*N{UJ) -EiA*N)) + (E(^) - A*), 

where the first term is a statistical error and the second term is a bias (systematic error). We 
focus here on the statistical error, and propose approaches yielding better approximations of 
E[A|v], for a given truncated domain QN. Optimal estimates on the variance of A*N have 
been established in [23, Theorem 1.3 and Proposition 1.4]. See also [20, Theorem 1]. In these 
works, it has been noted that the systematic error is much smaller than the statistical error, in 
the sense that the latter decays with a slower rate with respect to iV than the former. These 
results are consistent with numerical observations. For large values of iV, the statistical error 
(that we address here) is therefore dominating over the systematic error. There is thus a 
definite practical interest to focus on that error and design approaches to reduce it, as we do 
here. 

To approximate E [A*N], a standard way is the Monte Carlo method. We give ourselves 
a set of M independent copies (or realizations) {ATn)1<rn<M of the random coefficient A. 
The corresponding truncated problems (8) are solved, which provides us with a sequence 
of independent and identically distributed homogenized matrices A*^™^), defined, for any 
p e Rd, by 

IV/vl JQN 

where Wp'171 is the solution to the corrector problem (8) associated to A™. Then wc define 
the empirical mean 

1    M 

VM{A*N) = -^A*ir. (9) 
m=l 

Since the matrices ^ are i.i.d., the strong law of large numbers applies: 

VM {A*N) {u>)   —>   E{A*N) almost surely. 
M-H-oo 



The central limit theorem then yields, for any component 1 <i,j < d, 

E f lA^ Var   [AU,    Ar(0,l), (10) 
M->+oo 

where the convergence holds in law, and A/^O, 1) denotes the standard Gaussian law. From (10) 

it is commonly admitted that the exact mean E ([AJyL) lies in the confidence interval 

fJ-M (>u?) 
/Var([^]ij.) \/Var([A^ 

i   ''" '    -      -     — - /^M ([^Uij + 1-96 
M 

The value //M [ [A^]i • 1 is thus, for both M and A^ sufficiently large, often adopted as an 

approximation of the exact value [^L- The overall computation described above is thus very 
expensive, because each realization requires a new solution to the problem (8) of presumably 
large a size since iV is taken large. 

In the sequel, we show that, using a control variate approach, we can design a practical 
approach that, for any finite N, allows to compute a better approximation of E [A^] than (9). 
Otherwise stated, for an equal computational cost, we obtain a more accurate (i.e. with a 
smaller confidence interval) approximation. 

We detail in Section 3.2 the general principle of the approach, and show how to apply it 
to the homogenization setting in Sections 3.3 and 3.4. We next collect our numerical results 
in Section 3.5 and our theoretical results in Section 3.6. 

3.2    The control variate technique: general principle 

Before1 applying the approach to our specific setting, we briefly describe here the control variate 
approach in a general context. Considering a random variable X, our aim is to compute its 
expectation E{X). In the sequel, we will use that approach for the random variable {A^u))^, 
for any entry I < i,j < d. 

As pointed out above1, a first possibility is to resort to M i.i.d. realizations of X, denoted 
Xm{u>) for 1 < m < M. The expectation is then approximated by the Monte Carlo empirical 
mean 

M 
TMC 1   V^ ym/. w 

771 = 1 

and we know that, with a probability equal to 95 %, E [X] lies in the confidence interval 

/ MC 
M 1.96- >Ag*1,MC + 1.96V^g 

5 ±M M 
(11) 

To reduce the variance of the estimation, consider now a random variable Y, the expectation 
of which is analytically known. Then, for any deterministic parameter p to be fixed later, we 
consider the controlled variable 

DM X{u)-p(Y{u)-W])- (12) 



Since E[y] is known exactly, sampling realizations of Dp amounts to sampling realizations 
of X and Y. We obviously have E[DP] = E[X]. To approximate E[X], the control variate 
approach consists in performing a standard Monte Carlo approximation on D/,. We hence 
consider M i.i.d. realizations of Dfn denoted DtJ^o;), introduce the empirical mean 

M -,      M 

m=l m=l 

and write that, with a probability equal to 95 %, E[Dp] = E [X] lies in the confidence interval 

M VM      M VM 
(13) 

If p and Y are such that Var [Df] < Var [X], then the width of the above confidence interval 
is smaller than that of (11), and hence we have built a more accurate approximation of E [X]. 

The choice of Y is problem-dependent and is discussed below in our specific context (see 
Section 3.4). Assuming for now that Y is given, we detail here the classical rationale and 
technique employed to choose p in (12). We wish to pick p such that the variance of D^ is 
minimal. Writing that 

Yav[Df)] = Var[X] - 2pCov[X, Y] + p2Yav[Y], 

we see that the optimal value of p reads 

p* = argmin Var[Dp] = ^^ ■ (14) 

For this choice, we have, using the Cauchy-Schwarz inequality. 

p We thus observe that, for any choice of F, we can choose p such that the variance of D 
YsivlD *] 

is indeed smaller than that of X.   Of course, the ratio of variances  rr^r, which is di- 
Ya.r[X] ' 

rectly related to the gain in accuracy, depends on Y, and more precisely on the value of 

——j—TTTT—r—r.  The larger the correlation between X and Y, the better.  In particular, we 
Var|AjVar[r J 
see that the control variable Y needs to be random. 

In practice, we do not have access to the optimal value (14), which involves exact expec- 
tations. One possibility (which is the one we adopt here) is to replace (14) by the empirical 
estimator 

" - ""^ ■ EL.O-M-Em)* ■ (15> 



where /tijw(X) = — >^ Xm{ijj). This choice corresponds to minimizing with respect to p the 

1      M 

empirical variance of Dp defined as — y^j {p™{u) — IJ,M{X)) , where D™{u) = Xm{uj) - 
in-- I 

p\Ym{uj) — EfK]). The expectation E(X) is then approximated by 

1    M 

m=l 

3.3    A weakly random setting: rare defects in a periodic structure 

As pointed out in the introduction, the surrogate model that we use to build our controlled 
variable is inspired by a defect-type model, introduced in [9, 10, 11] in the context of weakly 
random models, and which we describe now. 

3.3.1     Presentation of the model 

Assume that, in (4), the random matrix A is of the form 

A{X,UJ) = Ari{x,oj) = ApeT{x) + bv{x,uj)(cpeT{x) - ApeT{x)j (16) 

where Aper and Cper are Zd-periodic matrices, and 

bri{x,uj) = Y^ 1Q+k{x)BkiUJ)^ (17) 
fcezd 

where {Brl)k&id are i.i.d. scalar random variables. We furthermore assume that Bj? follows a 
Bernoulli law of parameter /y G (0,1): 

nBl = l) = rh    P(^ = 0) = l-»7. (18) 

In each cell Q + k, the field A is equal to Avlir with the probability 1 —r/, and equal to Cper with 
the probability rj. When q is small, then (16)-(17)-(18) models a periodic material (described 
by ^4per) that is randomly perturbed (and then described by Cper). The perturbation is rare 
when r/ is small (therefore the material is described by Aper "most of the time"), and thus it 
can be considered as a defect. However, the perturbation Cper — Ap<iT is not small. We refer 
to [11] for practical examples motivating this framework. 

On Fig. 1, we show two realizations of the field A71[X,UJ) (on the domain Q^ for A^ = 20) 
for some specific choices of Aper and Cper (see [11, Fig. 4.2] for more details). On the right 
part of that figure1, we set 7] = 0.4, which is close to the value q = 1/2, when defects are as 
frequent as non-defects. 

Note that specifying AJt{x, UJ) on Qv simply amounts to specifying the values of Bjj?(w) for 
all k such that k + Q C QN ■ 
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Figure 1: Two instances of material (16). Left (77 = 0): perfect material with circular 
inclusions located on a periodic network. Right [r] — 0.4): perturbed material (each inclusion 
is deleted with a probability equal to 0.4). 

3.3.2    Weakly-random homogenization result 

Consider the model (16) (17)-(18). The random variable B2{u>) can take only two values, 0 
or 1. Therefore, on the domain QAT, there are only a finite number of realizations at ATI{X,UJ). 

The realizations with the highest probabilities are as follows. 
With probability (1 — q)^^, there are no defects in QN, and the realization actually 

corresponds to the perfect periodic situation. We introduce the periodic corrector lyf), solution 
to 

-div (.4per (p + VWp)) = 0,        Wp is Q-periodic, 

and the associated matrix ApeT, obtained by periodic homogenization: 

VpeRd,    A;erp= I Aper{P + Vw0
p). 

JQ 

(19) 

(20) 

With probability 77(1 - r?)1^1  l, there is a unique defect in QN, located, say, in the cell k + Q 
(see Fig. 2). Let us define 

^1  — ^4per + I/C+QI L'per — ^4per 1 > 

the associated corrector Wp'k'N, solution to 

-div{Ak
l{p + Vw]

p
k-N)) =0, 

and the homogenized matrix A*lkN, given by 

1 

w l,k,N is Q^r-periodic, 

VpeMd,    AlktNp 
\Q N\ JQ 

A\ {p + Vw^k'N) 

(21) 

(22) 

(23) 

With probability r)2{l- TJ^NI  2^ ^QJ-Q are ^wo defects in QN, located, say, in the cells k + Q 
and I + Q (see Fig. 2). Let us define 

ik,l 
Aper +  ( lfc+Q + U+Q n    —A (24) 

10 



the associated corrector Wp'k'l,N, solution to 

-div (Ak
2'

1 [p + Vw2
p
k'l'N)) = 0,        wf'1'1* is QN-periodic, 

and the homogenized matrix ^ fc ; /v, given by 

VpGRd,    Al^v^-t-f   Af(p + Vv%k'l'N). 
wm JQN 

All the other configurations (with three defects or more) have a smaller probability. 

(25) 

(26) 

• • • • • •••••• 
• •■>•• •••••• 
• • • • • •••••• 
••••• •••••• 

• • • • • •••••• 
• • • • • • • • • • 
• • • • • •••••• 
• • • • • ••••••• 
• • • • • «)••••• 

Figure 2: Left: material modelled by A^, with a single defect.  Right: material modelled by 
Ao'1, with two defects. 

As formally shown in [11, Section 3.2], we then have the following result, for any given N: 

N rN 
E [AlN] = A;eT + nA? + T?A', + 0(r;3), (27) 

where .4*    is given by (20) and per 

X 
k,leXN,k^l 

where 

We note that 

IN := {keZd; Q + kcQN} 

N 1 Ai  =Y1 Ai^f.    and    A% = -J2    J2    A -rk,l,N 
h def ! (28) 

k€lN keiN leXN,tyk 

where A^ (resp. ^2'^) is the "marginal contribution" to the homogenized matrix from a 
configuration with a single defect in k + Q (resp. two defects in k + Q and l + Q): 

I*'" A*       - A* 
rk,l,N -jK,i,i>    _    A* A*       - A*      4- A* 

/12def       —     ^k^N        ^l.fc.N        ^l,/,^ ^ ^per' 

(29) 

(30) 

11 



We refer to [11] for illustrative numerical results. 

Due to periodic boundary conditions (22), that are reminiscent of the periodic boundary 
conditions in (8), we have that 

Ai,k,N does not depend on k. (31) 

Likewise, ^fc/zv depends only on k — I. Thus, there is only one problem (22) to be solved 
(say for fc = 0). Likewise, there are \I^\ — 1 problems (25) to be solved (say for /c = 0 and 
I T£0), and not |XJV| (|2jv| — 1)- Noticing that (25) is a problem parameterized by I, the authors 
of [16] have shown how to use a Reduced Basis approach to further speed-up the computation 

—N . —N 
of A2 ■ In practice, one can still obtain a good approximation of A2 without solving all the 
|X/v| — 1 problems (25). 

3.4    Application to stochastic homogenization 

We now introduce, for the model (16)-(17)-(18), a control variate approach. Our aim is 
now to address the regime when r] is not close to 0 or 1 (the approximation (27) is therefore 
not accurate enough). Recall also that, in view of the discussion of Section 3.2, we need a 
random surrogate model to build our controlled variable. In what follows, we first build an 
approximate; model based on configurations with a single defect (see Section 3.4.1), and next 
turn to building a better approximate model that also uses configurations with two defects 
(see Section 3.4.2). As will be seen below, this second approximate model not only depends 
on the quantity of defects, but also on their geometry, that is on where the defects are located 
in QN. 

Numerical results obtained with these approaches are collected in Section 3.5. On the 
particular test-case at hand, we will observe (see Fig. 5 below) that the approach using the 
single defects provides a variance reduction ratio close to 6, while the approach using single 
defects and pairs of defects provides a gain roughly 6 times larger (here of the order of 40). 

3.4.1     A first-order model 

Recall (see (16)-(17)) that 

A{x,u) = An{x,uj) = Aper{x) + b1l{x,uj)(cper{x) - Aper{xU 

where ApeT and Cper are Zd-periodic matrices, and 

bn{x,u) = Y^ lQ+k{x)Bl{u)), 
kezd 

where {B^)keZd are i.i.d. scalar random variables. Introduce 

Ar{UJ) = ^ B^fL (32) 
feeijv 

—k..\ 
where Aide{, defined by (29), is the "marginal contribution" to the homogenized matrix coming 
from the configuration with a single defect located in k + Q. In view of (28), we notice that 

E Ar] = EE^]^=^E^=^ 

12 



which is the first order correction in the expansion (27). When rj is small, the expectation of 
A* +ATl'N{ui) is a good approximation of the expectation of A*N{UJ), accurate up to an error 

of the order ofrf. Thus A*   +A
T

I
M

{UJ) is a good surrogate model for A*tN{u). Following (12), pe 
we now introduce our controlled variable as 

^■»   =   AIN{UJ) - p (^er + A?'» - E [A^ + A^]) 

=   AlN{u)-p[A^N{u)-vX)- (33) 

In view of (32), (29) and (31), we recast (33) as 

D^{UJ)=AIN{UJ)-P Y, Bliuj)] - n\xN\ 
KkelN 

Adef- (34) 

Remark 1 Note that, m (34), A^N{u) andY,keiN ^I'(^) are correlated. Indeed, m practice, 
we start by drawing a realization of the random variables B*(w) for all k eXN. This deter- 
mines first Y^keX B'ki00)' nnd 'S('(:ond th(i fiM A{x,u) on QN, from which we compute the 
associated A;N(J) following (7)- (8). The fact that A*tN{uj) and T,k£iN 

Bfe(w) are correlated 
is important in view of variance reduction, as explained in Section 3.2. 

Computing M realizations of Dj;7l{uj) therefore amounts to: 

• (offline stage) determine A^^ by solving the problem (19)  (20) on Q and solving only 
once the problem (22)-(23) on QN (say for fc = 0), and 

• (online stage) solve M corrector problems (7)  (8) on QN (for M lid. realizations of A 
on QJV)) and evaluate -D^r'(a;) according to (34). 

Let CN denote the cost to solve a single corrector problem on QN. The Monte Carlo empirical 
estimator and the Control Variate empirical estimator, defined respectively by 

M -■    M 

m=l "i=l 

therefore share the same cost {A4CN for the former, (1 + M)CN for the latter). We are now 
left with choosing p in (33) to minimize the variance of any entry {D1/1)^ l<i,j <d. Note 
that p therefore depends on ij. This parameter p is in practice chosen according to (15). 

3.4.2     A second-order model 

We now introduce a more refined approach, that not only takes into account the contributions 
from single defects (through A^, see (32)) but also contributions from pairs of defects. To 
that aim, we introduce 

OH^E     E    ^M^'M^den (35) 
fceijv leiNJ^k 

13 



where A^^ , defined by (30), is the "marginal contribution" to the homogenized matrix 
associated to the configuration with two defects located in /c + Q and I + Q. In view of (28), 
we notice that 

E A'2 
rt,N 

k€lN l£lN,l^k k£lN lel^J^k 

which is the second order correction in the expansion (27). When r] is small, the expectation 
of A*er + A'l'   (a>) + A^'   (w) is a good approximation of the expectation of A* N{(JO), accurate 
up to an error of the order of r/3. 

In a way similar to (33), we now introduce our second-order controlled variable as 

DlZ» = AlNi")   PI (^H - ^f) - P2 (^M - n'X) ■ (36) 

We have introduced two deterministic parameters pi and P2, which need not be equal.  For 
any choice of these parameters, we have E [■Dpj''  ] = E [A* N] ■ 

To evaluate (36), we first have to precompute the deterministic matrices 

-jfe.-Af        -jO,N -jk,l,N       -T0,l-k,N 
^Idef = ^Idef      ancl      A2dei   = ^2 def       • 

Computing M realizations of Df;11   (to) therefore amounts to: 

-TO,N 
offline stage: (i) determine A1'def by solving the problem (19)-(20) on Q and by solving 

only once the problem (22)~(23) on QN (say for k = 0); (ii) determine A2'def by solving 
-N 1 problems (25)-(26) on QN (for k = 0 and I EXN, I ^ 0). 

• online stage: solve M corrector problems (7)-(8) on QN (for M i.i.d. realizations of A 
on QN), and evaluate D2^'   {co) according to (36). 

Questions related to the cost of evaluating A^ef are discussed below. 

Notice that, in the above construction, we have considered as reference configuration the 
defect-free material, i.e. that for rj = 0. Since, in the regime we focus on, rj is not small, 
there is no reason to favor the defect-free configuration (// = 0) rather than the full defect 
configuration (77 = 1), which corresponds to the periodic matrix Cper. We therefore introduce 
(compare with (29)) 

—k N 
uldef — '"'l.fc.iV — 0per' 

where C* k N is the homogenized matrix corresponding to a unique defect with respect to the 
periodic configuration Cper (compare with (21), (22) and (23)): 

VpeRd,    ClktNp=r±1l   (^(p + Vt^), (37) 
\^>N\ JQN 

where, for any p, the corrector Vp'k'N is a solution to 

-div (Cf {p + Vv1/^)) = 0,        vlp
k'N is Q.v-periodic, 

14 



where Cf = Cper - U+qfCper - ^perj-   Likewise, we introduce the second order correction 

(compare with (30)): 

CVd'ef   = (^2,k,l,N ~ CxkN — CllN + Cper, (38J 

where C*ktN is defined by (37) and Q^^yy is defined by (compare with (24), (25) and (26)): 

VpG a 2XUNP 
\Q N\ 

Ck,i {p + v^,.,^) i (39) 

where, for any p G ]Rd, the corrector v^k'l'N is a solution to 

-div (C^1 (p + Vv2
p'
k'l'N)) = 0,        t>2

p
k'l'N is Qjv-periodic, 

where Cj"' = Cper - (U+Q + 1/+QJ (cper - /lperj. As in (35), we introduce 

1 - Bl^\ 1 - El{u\ 1 C 2def ' (40) 
k£LN leXNttyk 

where C^ is defined by (38). Its expectation reads 

S;-" := E (~iri,N = ^E E E[(i-^)(i-^)]c2
fc^ 

2 7=M-N 
2def • 

We eventually introduce the controlled variable (compare with (36)) 

^kpaM = AnA") - K {A^^) - ^) 
rN -p2MrM-^2 -P3 crM-c2' vn>N i tn,N (41) 

Consider now a specific entry I <i,j <d of the homogenized matrix. The control variate 

approach consists in approximating E   {A*tN)      by considering a Monte Carlo estimator for 

E (D
3JI
 ).. . The deterministic parameters pi, p2 and ps are ideally chosen to minimize 

the variance of {D** p3{u)) • They depend on ij and are the solution of the following 3x3 

linear system (we drop the subscript i,j for conciseness): 

VarlArip! +Cov[^yv,^/v]p2 + Cov[^/v,^/v]p3 = COY[^N,A^
N

] 

CovKN, An^i + Var^^]^ + CoV[A^N ,C^N]p3 = Cov[AlN, A^] 
Cov[C2^, A^lPi + Cov[^'-w, A'f]p2 + Yav[CZN]p3   =   Cov^,^, C^w] 

depending on the covariances between the entries ij of A*hN, A^' , Ag and 0%' . In practice, 
these covariances are approximated by empirical estimators, as explained in Section 3.2. 
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In practice, computing the matrices ^'def (and likewise C2'd'ef) is rather expensive (because 
each problem is set on the large domain QN, and the number of these problems increases when 
iV increases). It is therefore useful to approximate them using the Reduced Basis strategy 
introduced in [16], which dramatically decreases the computational cost. The procedure is 
essentially as follows. We first solve the single defect problem (22) for k = 0, and solve (25) 
for a limited number of locations of the defect pairs, say fc = 0 and I close to k. On the basis 
of these computations, we an1 then in position to obtain very efficient approximations of the 

matrices ^2 def for all ^ ^ ^Vi ^ 7^ 0- Evaluating (35) is thus inexpensive. Thus, up to a 
limited offline cost (i.e. the cost for solving the few problems (25) that we have to consider), 
the Monte Carlo empirical estimator and the Control Variate empirical estimator, defined 
respectively by 

1      M M 

^ME^-H 
and ^:=^E^:.>)' M ^   7hNX  ' M   '    M ^ 

m=l m=l 

share the same cost. 

Remark 2 In sharp contrast to the first order- control variable, the second order control vari- 

able not only depends on the number of defects in the materials, i.e.   Vj B^UJ), but also on 
kelN 

their- location.   The specific geometry of the materials, which is ignored in (34), is taken into 
account in (41). 

In the sequel, we demonstrate numerically the efficiency of the approach (see e.g. Figure 5 
below), before giving some theoretical arguments proving that variance is indeed reduced. 

3.5    Numerical experiments 

We now apply the methodology described above to some two-dimensional model material for 
which the field A is of the form (16)-(17)-(18) (see Fig. 3). We choose 

^per(^) = 0M2    and    Cper{x) = /3Id2, 

with o = 3 and /3 = 23 (similar qualitative conclusions are obtained with other generic 
values). All variances are estimated on the basis of M = 100 independent realizations. All 
the correctors problems have been solved using FreeFEM++ [21], on a mesh of size h = 0.2, 
using PI finite elements. We present here some numerical results, and refer to [6] for additional 
results. 

On Fig. 4, we plot as a function of r/ e (0,1) three quantities: 

• the first entry of the matrix E [A^ N] (obtained in practice by an expensive Monte Carlo 
estimation); 

• the weakly stochastic approximation (27), which is an approximation of E [A* N] with 
an error of the order of 0(?]3); 

• the weakly stochastic approximation obtained in the regime (1 - r/) < 1, which is an 
approximation of E [^4^] with an error of the order of 0((1 - r])3). 
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Figure 3: A typical realization of the checkerboard test-case with r] = 1/2. 

We work with TV = 10, and the following observations are also valid for larger values of N. 
We see on Fig. 4 that, when r) < 0.4, the deterministic expansion (27) is a very accurate 

approximation of E {A*N)U ■ This approximation is inexpensive to compute. The same 

observation holds in the regime 77 > 0.7, where the deterministic expansion around r] = 1 
provides a satisfying approximation. However, we note that none of the two weakly stochastic 

expansions are accurate when 0.4 < q < 0.7. In that regime, one has to compute E {A* N)u 

by considering several realizations of (7)-(8). In that regime, considering a variance reduction 
approach is useful. 

Supercell size: 10x10 

Figure 4:   E   (A*^)       as a function of r], for iV = 10.   Black curves:   weakly stochastic 

approximations. Blue curve: Monte Carlo standard estimator. 

In the regime we have identified, we show on Fig. 5 the ratios of variance 

Var([A;yv]11) 
Rr),N — Var(D) 

(42) 

where D is either the first-order controlled variable D]^^) defined by (33), or the second 
order controlled variable Opf^M defined by (36), or the controlled variable D];^^ a; 
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defined by (41). The parameter p (resp. {pi,P2) and (pi,P2)p3)) is chosen to minimize the 
empirical variance of the estimator (see Section 3.2). 

Remark 3 The second-order controlled variable D^'^ou) defined by (36) is built by consid- 
ering ApeT as the reference. One could alternatively build a second-order controlled variable 
considering CpeT as the reference. Numerical results obtained with such a controlled variable 
are similar to those obtained with D2

(l^l)2{u)) (results not shown). 

Supercell size: 10x10 

0 2       0,25       0 3       0 35 

Figure 5:  Ratio R,hN defined by (42) as a function of rj {N = 10).  Black curve:  controlled 
variable D^'v{ijj).  Red curve:  controlled variable D2

p^fl2{uj).   Blue curve:  controlled variable 

P\,P2,P3^      > 

We observe on Fig. 5 that, for q = 1/2, the approach using the first-order controlled 
variable (33) provides a variance reduction ratio (42) close to 6. This gain is close to the gain 
obtained using an antithetic variable approach (see [13, Table 2]). In contrast, when using 
the controlled variable (41) taking into account first order and second order corrections with 
respect to both the cases 77 = 0 and ?/ = 1, we obtain a gain close to 40. 

We now investigate how the gain depends on the size of the domain Q^. To that aim, we 
show on Table 1 the ratio (42) as a function of N, for r} = 1/2. We observe that the gain is 
essentially independent of N. 

iV = 6 TV == 10 AT = 20 iV = 30 TV = 50 
First order 7.57 5.18 6.55 8.51 7.34 

Second order 35.9 41.8 37.6 35.6 40.4 

Table 1:  Ratio R7I}N defined by (42) as a function of TV (r/ = 1/2).   First order:  controlled 
variable Dl^icj). Second order: controlled variable D^1 

PUP2.P3 

We eventually plot on Fig. 6 the confidence intervals obtained for the Monte Carlo ap- 
proach and the Control Variate approach based on (41). The latter confidence interval width 
is dramatically smaller than the former. 
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Figure 6:   Estimation of E f [A* jy]    j  as a function of N.    Blue:   standard Monte-Carlo 

estimator. Red: Control Variate estimator based on (41). In both cases, estimators are built 
using M = 100 i.i.d. realizations. 

The numerical results presented above have been exposed in details in [6].  They clearly 
demonstrate, from a numerical perspective, the efficiency of the approach. 

3.6    Theoretical validation 

lu [6], we have given arguments that guarantee the efficiency of the method in the one dimen- 
sional case. We have also provided there elements of theoretical analysis in higher dimensional 
settings. We review here the main results that we have obtained. 

3.6.1     One-dimensional case 

In the one-dimensional case, we have the following result: 

Proposition 1 Consider the model (16)-(17)--(18) in the one-dimensional case. Let A*hN 

he the apparent homogenized matrix defined by (7)-(8) and Dl;v he the first-order controlled 
variable defined by (33).  Then 

and, for the optimal value of the deterministic parameter p, 

mmYar(Dl'A = Var^/') = O 
1 

Let D^'AUJ) he the second-order controlled variable defined by (41). For the optimal value 
of the deterministic parameters p\, p2 and p3, we have 

min Var(^;p2.p3 )-oG9 
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Using the control variate approach based on the first-ordor model (resp. second order 
model), the variance is thus improved by at least one order (resp. two orders) in terms of N. 
Note in particular that, in the above results, we have not assumed rj to be small. 

3.6.2     Multi-dimensional case 

In the multi-dimensional case, our theoretical results cover the regime r? <^ 1. This is not the 
regime we wish to address with our approach. Obtaining theoretical results in the general 
case is still an open question. Note that the numerical experiments of Section 3.5 have 
been perfored in the regime of interest when weakly stochastic approximations (based on the 
asymptotics ry -C 1) do not yield accurate results. 

Consider any entry ij of the homogenized matrix. The estimation of E (A* N).. can 

be done by a Monte Carlo empirical mean on (A*hN{uj)).., {Dj;TI{u)).. (see Section 3.4.1) or 

{D^P2{UJ))    {see Section 3A.2). 
'ij' 

Proposition 2 For any entry ij of the homogenized matrix, we have 

Yar K/v),   =<m    Var  (D^)., Otf Var (^=0 y 
0{r)s 

We thus see that, by using the first-order (resp.   the second order) surrogate model, the 
variance is improved by at least one order (resp. two orders) in terms of rj. 

4    Homogenization approach for the numerical simula- 
tion of periodic microstructures with defects 

[Work expanded in [12, 1, 2, 3J.J 

The homogenization of (deterministic) non-periodic systems is a well-known topic. Al- 
though well explored theoretically by many authors, it has been less investigated from the 
standpoint of numerical approaches (except in the random setting). In collaboration with 
X. Blanc and P.-L. Lions, C. Le Bris has introduced a possible theory, giving rise to a nu- 
merical approach, for the simulation of multiscale non-periodic systems. The theoretical 
considerations are based on earlier works by the same authors (derivation of an algebra of 
functions appropriate to formalize a theory of homogenization). The numerical endeavour 
that is on the horizon is completely new. 

The general approach consists in approximating at the hue scale the solution to an elliptic 
equation with oscillatory coefficient when this coefficient consists of a "nice" function which 
is, in some sense to be made precise, perturbed. A typical example is that of a periodic 
material (where the period is small with respect to the size of the sample, so that there 
exists a separation of scales between the microstructure and the macrostructure), with a 
superimposed defect in one (or " a few") periodic cells. The equation of interest is 

-div ^per ( 7 ) + ^dei 
X 

Vtt, / in ft, (43) 
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where the perturbation Sdef is localized (in the sense that Bde{ vanishes at infinity), while 
Aper encodes the perfect, periodic medium. From the macroscopic standpoint, the overall 
behavior might, or not, be the same as that of a perfect periodic material. Anyhow, close to 
the defect (close to the "support" of -Sdef), the response1 is of course very different from that 
of the perfect material. 

We aim at developing numerical approaches able to efficiently and accurately capture this 
local difference. In terms of material science, this is of course of paramount importance: 
material failure indeed often occurs close to defects. 

The approach is based on the determination of a local profile, solution to an equation 
similar to the corrector equation (2) in classical homogenization. In the case (43) with Bdei e 
L2{Rd) (an assumption which somehow formalizes the fact that Bde{ vanishes at infinity), this 

equation is 
-div [{ApeT + Bdei) {p + Vwp)] = 0 in Rd, 

where p is any fixed vector in Rd. The well-posedness of that equation, in various functional 
settings depending upon the nature of the perturbation, is a theoretical issue that has now 
been investigated and solved, for several prototypical situations: local perturbation, two 
different periodic structures separated by a common interface, ... 

The theoretical results obtained to date are being collected in the series of publications [12, 
1,2]. The work [12] also contains preliminary numerical simulations, in the case Bdfif € L2{Rd). 
The review article [3] presents the various approaches within a more general perspective. 

The purpose is now to consider cases closer to actual local defects in materials (such as 
dislocations) and also to put all this in action as a general numerical approach on cases of 
actual practical relevance. 

5     A parameter identification problem in stochastic ho- 
mogenization 

[Work expanded in [7].] 

Consider the highly oscillatory equation (4), where the matrix A is assumed to be ran- 
dom and stationary. We have seen in Section 2.2 that this problem admits the homogenized 
limit (3). Random homogenization theory actually provides formulas to compute the ho- 
mogenized matrix A*, see (5)-(6). We thus have at our disposal a procedure to compute 
macroscopic quantities if we know the microscopic quantities, and to solve the so-called for- 
ward problem. However, in practice, given a heterogeneous materials, it is a difficult question 
to decide on the law of the microscopic physical properties, i.e. on the probability law of 
A{X,LJ). On the other hand, macroscopic quantities are more easily accessible. It is thus of 
interest to consider the inverse problem, and try to extract some information on the properties 
of the materials at the microscopic scale on the basis of macroscopic quantities. 

Of course, homogenization is an averaging process, which filters out many features of 
the microscopic coefficients. There is thus no hope to recover a full information about the 
microstructure (in our case, the probability distribution of A{X,UJ)) from the only knowledge 
of macroscopic quantities such as A*. We adopt here a more restricted objective. We assume 
a functional form for the distribution of the microscopic field (namely, a Weibull distribution, 
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see Section 5.1 below) and aim at recovering the parameters of that microscopic law of the 
basis of macroscopic quantities. This question belongs to the wide family of inverse problems. 
However, the mutiscale context brings in some specificities. We refer to [24] for a review 
article on inverse problems in such a multiscale context. 

5.1     The microscopic model 

We consider here a problem written at the Hue scale as a finite difference problem (rather 
than as the partial differential equation (4)). The motivation for this choice is related to 
the particular application (transport phenomena in porous media, modelled as a lattice of 
channels) we have in mind. However, our approach is not specific to discrete elliptic equa- 
tions. It could also be applied for problems modelled by continuous elliptic partial differential 
equations (PDEs) with random, highly oscillatory coefficients, such as (4). 

For the sake of completeness, we detail here the homogenization result in the setting of 
discrete elliptic equations, which is in essence the same as that recalled in Section 2.2. 

Let P be a bounded domain of M.d and / G C,0(r)). Let A be the random stationary matrix 
field given by 

VxeZd,    A{x,u) = di&g(a1ix,u),...,ad{x,u)\, (44) 

where the conductances {ai{x, ■)}i<i<d x&zd form an i-i.d. sequence of random variables. Let 
us be the unique solution to 

V* [Aix/e, u)y£u£{x, u)] = f{x)   in P n cZd,        u£{x, CJ) = 0 in {Rd \V)n eZd,      (45) 

where the discrete gradient V£ (resp. the discrete divergence V*) is defined, for any function 
v defined on the lattice £Zd, by 

(V^Or) = - 
v{x + eei) — v{x)\ 

v{x-\-eed) -v{x)J 

and 

(v»(x) = ]r v^x) -v^x - eei) 

i=i 

The equation (45) plays here the role, in the current setting, of (4). 
When e goes to 0, uE converges to some homogenized function u*, solution to the (contin- 

uous) partial differential equation (3), where the homogenized matrix A* is given as follows: 

where, for any p G 
solution to 

VpERd,     v4> = E[A(x,-)(p + Vu;p(x,-))] (46) 

S. , the corrector wp is the unique (up to the addition of a constant) 

-V* 

\/wp is stationary, 

yx e Zd,    E[Vwp{x, •)] = 0. 

0 in Zd, 

(47) 
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The expressions (46)-(47) play here the role, in the current setting, of the expressions (5)-(6). 

As in the continuous case described in Section 2.2, the corrector problem (47) is untractable 
in practice, since it is posed in the entire lattice Zd. Approximations are therefore in order. 
The standard procedure1 amounts to considering finite boxes as in Section 3.1. For any Ar, we 
denote by QM the finite box {0,..., N}d. The truncated corrector (V 

as the solution to 
A{-,UJ){P + VXV^{-,UJ))   =0inQ Wj 

wt; {•,(*}) is Qyv-periodic. 

p{-,ui) is defined on QN 

(48) 

In turn, the homogenized matrix A* is approximated by A*N defined by 

Vprf,    A*N{uj)p=-^- Y, A{x,uj){p + Vw*{x,u)). 
\Q 

(49) 
N x^Qr 

In the sequel, we assume that the conductances {ai{x,uj)]xeZd l<i<d (entering the micro- 
scopic field A, see (44)) form an i.i.d. sequence of random variables that are distributed 
according to the Weibull law of parameter (A, A;). We recall that such random variables are 
positive, with a probability density that reads (see Figure 7) 

Vr >0, 
k /r\*-i /(r;M) = x(j)      exp(-(r/A)fc). 

In practice, a Weibull distribution is generated as follows.   Let u{uj) be a random variable 
uniformly distributed in [0,1]. Then 

a(a;) = A   — ln(l — U{UJ)) 
l/k 

(50) 

is distributed according to the Weibull law of oarameter fA. k). 

Weibull distribulions 

V.-2. Ianibd3=0 5 

k=2, lambda-1 

k"2, lambda=2 

k-l 1. Iambda=1 

k^1 5, lambda=1 

k=3, lambda^l 

Figure 7: Examples of Weibull distributions. 

5.2    Forward and inverse problems 

The forward (direct) problem can be phrased as follows: given the parameters (A, k) of the 
Weibull law of the microscopic field A(-,a;), compute 
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the macroscopic (homogenized) permeability E [A*N], 

its relative variance 

VarR[^] = 
Var[^] 

The inverse problem we consider here is the following. Given the quantities E [A*N] and 
VarR^Ajy], we wish to find parameters (A, A:) consistent with these observations. The reason 
why we choose E [A*N] and VarR[^4^] as input parameters is discussed below. 

Ideally, the inverse problem can be formulated as follows. Consider the functional 

FA,(A.fr)=fE'^*'l-l)2
+f

VmR^'A-*-'i-l   ' 
V ^obs / V Kbs 

where 
^bs=E[A^(Aobs,fcob8)] 

is the observed macroscopic permeability, while 

Vobs = VarR[^(Aobs, fcobg)] 

is the observed relative variance. We consider the problem 

inf Fiv(A, k) 
\.k 

and we obviously see that (A0bs, A;0bs) is a minimizer of the above problem. Furthermore, we 
have the following result (see [7]): 

Lemma 1  Consider the one-dimensional setting d = 1, and set 

F00(A,A-)= lim FN{\,k). 
W-KX3 

Then F0O(A, fc) has a unique minimizer, which is (A0bs, A;0bs). 

The above result motivates our choice of the expectation and the relative variance as input 
observations. It shows that, although homogenization is an averaging process which filters 
out many features of the microscopic coefficients, our two macroscopic input observations are 
enough to characterize the two parameters of the microscopic probability distribution. 

In practice, the expectations in FN are approximated by empirical estimators: 

1    - 
E [A^(A, k)] « ^M(A, fc; u):= — Yl A^>' A' A') 

771=1 

and likewise for VarR[A^(A, k)], which is approximated by V/V,M(A, k;uj). A practical formu- 
lation is hence to consider the optimization problem 

infFAriM(A, A-;cc;), (51) 
\,k 

where 

WA,,;u)=^__ .j   +^__ ^   , 
where the observed values are given by A*bs = .4^ M(A0bs, kohs;uj) and likewise for Vobs. 
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5.3    Algorithm and numerical results 

To address the optimization problem (51), recall that, in view of (44) and (50), the microscopic 
hold can he written as 

A{;u) = A[\,k,{uk{uj)}k&zd), (52) 

where uk{uj) are i.i.d. random variables uniformly distributed in (0,1), and where .A is a 
deterministic function, the derivatives of which (with respect to A and k) are easy to compute. 

By computing the derivatives of (48) and (49) with respect to A and k, one can easily 
compute the first and second derivatives of A*N{X, k;u). It is thus possible to use a Newton 
algorithm to solve (51). 

On Figure 8, we show the numerical results that we have obtained on a two-dimensional 
problem, with the parameters iV = 10 and M = 30. We proceed as follows. We pick some 
target values Aobs and kobs, pick some fixed u E Cl, and solve- the forward problem for these 
values, thereby generating synthetic observed values A*ohi. = A*NM{Xobti,kohti,u) and Vohii. We 
next repeat the following procedure: 

1. we generate microstructures A{x,u) at the hue scale which are independent of those 
used to compute the observed values A*bs and I4bs- 

2. we solve the optimization problem (51) using a Newton algorithm, starting from an 
initial guess 10% off the reference value (Aobs, A;0bs)- 

3. we thereby identify some optimal parameters (A0pt(a;), fcopt(^))- 

We repeat the above procedure many times in order to obtain several i.i.d. realizations of the 
optimal parameters {Xopt{oj), kopt{io)), from which we build the histograms shown on Figure 8. 
We see that, despite the limited values of iV and M, we obtain a meaningful estimation of 
the exact parameters (A0bs,fc0bs)- 

Figure 8: Left: histogram of 
^opt(w) - k obs 

fc, 
Right: histogram of 

Aopt(w) — A0 bs 

obs A obs 

Remark 4 Our approach is not specific to Wethull laws. It can be used for other distribution 
laws with parameters 0.   What we need is that the random field A{x,u) used at the microscopic 
scale can be written as . 

A{X,UJ) = F(u{x,u),6j 
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where u{x,cu) is afield of random variables that are uniformly distributed and J- smoothly 
depends on the parameters 9 (see (52) in our particular case). Computing the derivatives of 
the microscopic random field A{x,u) (and next of the macroscopic, homogenized quantities) 
with respect to 6 is then easy. Our motivation for choosing Weibull laws comes from physical 
reasons: based on experimental results, it appears to be a reasonable choice. 

6    Conclusions 

The series of works presented in this report has contributed to provide more efficient numerical 
methods for the simulation of random heterogeneous materials. 

First, in some previous works (see [13] and subsequent works), funded by an earlier ONR 
grant, we have demonstrated the feasibility of using variance reduction techniques in the con- 
text of stochastic homogenization. We used there the antithetic variable approach. We have 
shown in Section 3 that it is as well possible to use other variance reduction approaches, such 
as control variate approaches, that involve the construction of reduced models in this particu- 
lar context. This technique is less generic than the antithetic variable approach, but provides 
better results. Ongoing efforts are focused on the development of yet another technique, 
based on the a priori selection of "representative" microstructures [4]. This selection step is 
inexpensive in comparison to the overall computational cost. The corrector problem (8) is 
next solved only for these "better" microstructures. 

Of course, considering other problems than the linear equation (4) (such as nonlinear prob- 
lems, ...) is also of interest. In [5], we have considered a nonlinear, convex homogenization 
problem, and we have shown that the technique of antithetic variables, considered in [13] for 
linear problems, can also be used in that nonlinear context, with similar results. 

Second, we have started to develop homogenization approaches for the numerical sim- 
ulation of periodic microstructures with defects (see Section 4). This theory gives rise to 
completely new numerical approaches. Numerical results have already been obtained for 
some classes of defects. These questions have not been explored in the previous ONR grant. 
Our purpose now is to consider cases closer to actual local defects in materials. 
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